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ABSTRACT

We determine the self-similar solutions of the Cauchy problem

(P,)

v(xO) -g(x)

for the constitutive function 0(v) max(O,v) and the model datum

(p p)x, x 0
g(x) =(D)

-(p fIly, x 4 0

where y,p > 0. It is shown that the unique solution of (P), (D) is
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v(xt)
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SIGNIFICANCZ AND WPLANATION ..-

Degenerate parabolic equations arise in the description of mlting

processes, gas dynamics and certain biological models. The interfaces

corresponding to degeneracies in the constitutive function usually separate-

different media in the physical problem.

The particular problem stated in the abstract is related to nonlinear

diffusion equations with nonmonotone constitutive functions~as has been

discussed in [1I1-3J * In this report-wee obtain self-similar solutions for (P)

f or a class of model initial data. The qualitative behavior of these

solutions, in particular of their interfaces, is typical of the situation in
theyAC

more general problems. in a subsequent report with Vasquez [1EV] we use such

self-similar solutions as comparison functions to study the regularity and the

behpvior for small time of the interfaces for problem (P) with

#(v) -max(O(v)) where ,~in strictly monotone increasing.

16'e1 W,



SELF SIMILAR SOLUTIONS FOR A DEGENERATE CAUCHY PROBLEM

Klaus Hllig and John A. Nohel

1.* INTRODUCTION AND RESULT. In this note we study certain aspects of

the degenerate Cauchy problem

vt *v),x# x e R, t >0(P)

v(xO0) - g(x)

for the constitutive function #(v) -max(v,O). We assume that the initial

data g are smooth on R\{O) with at most polynomial growth at infinity and

satisfy

xg(x) )0O, x O

g(o) -0

Problem of this type arise as convexifications of diffusion equations

with nonmonotone constitutive function. am has been discussed in (WI I * The

behavior of solutions for (P) in similar to the one phase Stefan problem

where g(x) -1 for x < 0. Existence and uniqueness of weak solutions of

(P) follows from nonlinear semigroup theory [BCPE] Moreover, using standard

approximation arguments one can show the existence of a continuous monotone

decreasing free boundary t + a~t) where v(s(t) ,t) - 0.

The pair (v,s) satisfies the free boundary problem

vt w vx~ x > s(t), t > 0,

v(x,0) - g(x), X > 0,

v(s(t) 't) -0 ()

sCO) -0
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Conversely, the solution v of 1) extended by v(xt) - g(x) for x < s(t)

is a weak solution of (P).

We are interested in the regularity and the qualitative behavior of the

free boundary for small t. Here we consider only the model datum
,, ." . .p+xy , ,X." ;0 0

g(x) - _,(D) , <--'-"

where p, > 0 are given constants. For this case problem (P) has self-

similar solutions which can be determined explicitly. The problem (P) with

more general initial data will be included in a joint paper with J. Vazquez

[HNV where we use such self-similar solutions as comparison functions.

Propsition. For the model datum (D) problem (P) has the unique self- -:

similar solution

v(x,t) -t /,-J x > s(t), t > o

where *(.) is the unique solution of the ordinary differential equation (1)

below, satisfying the initial conditions (2) and condition (3) at infinity.

The free boundary is s(t) - -- , t i 0. For p :- pi/p_ > 0 iven, K > 0

is the unique solution of the equation

Y+I 2

where D_ (e) is the parabolic cylinder function of index (-y - 1).
- -:y-

In the forthcoming paper with Vazquez [HNV] we will use the above

Proposition to analyse (P) for more general constitutive functions and more

general data, we assume there that * is smooth on [0,-) with 0 <

c ( *' ( C, #(v) 0 for v ( 0 and that the more general data satisfy

G(x) g(x) + o(Ix TY)  (IX 0) ,.

-2-
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where g is the model datum. Then it will be shown that

* s(t) -K4 -/*(0+)t + o(v't) (t 0) .

with K defined as before. For *(v) -max(0,v) and y 1 we proved in

[HN2,31 the stronger result ..-

8(t I -Kt O~ 12 ) (t~ 0)

for any a < 1/2. In this case (Z) reduces to

2 3 2
pj- K K- exp( K- f exp(-y 2/4)dy

4 -_K

Note, that a first order expansion of the equation g(s(t))u'(t) - vxs(t) ,t)

in ()formally yields a different result, namely -a--

(pjsB(t)s'(t) -(p 4.) + .

which yields

S(t) -- /2pt + .

whereas, e.g. for p IS 1, Kc .9034 ... */2. Trhe reason for this apparent

inconsistency is that all derivatives of v become singular at

(x,t) -(0,0)1 in particular vX is not continuous at this point.

-3-.
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2. PROOF OF THE PROPOSITION. Substituting v(x,t) -t"*(W/t) in (p)

one **athat mutsatisfy the linear differential equation

w 2#0(t) + E*'(C) - yli(4) -0 for > -Kc, 1

subject to the initial conditions

y+1
*(-c) -0, ('- -(p) (2)

and K is related to p. via

The free boundary is given by

SWt - -ic/.

Equation (1) can be solved explicitly. Put x - /i/2 and w(C)

Then (1) becomes

wU(x) + xv'(x) -yv(x) -0 *(4)

Setting v(x) -:y(x)exp(-x2/4) we obtain

2
y"(x) - + Y + x~yx (5)

This differential equation has the general solution (3, p. 116-1171

y(x) - b D W(x + b D (ix) (-Am < x <e Y~ > 0)

where D (9) is the parabolic cylinder function of index v. Thus the
V

general solution of (1) is

- b1~1 5)+b 2 ~()]xPA-) (6)

for < < and y > 0. To impose the initial conditions (2) we need the

formulae (above ref. p. 119)

~1~~ -4-

. C. e..*.d. .. I V - W~tV ~ t .... S *.
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2 2

b1D.. -)p...(-) D_ +bD (- )e -:

2 2

d iti

Teause (5)ia nistiefdont (2oriel the proaian of Dquation)si

*1' -Y-1

-b~~ ~ D K

(i) -), iv'2xp[( +))I']

y+1 (8)
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which isvalid for --<arg z- Thus for e R, y > ,
4 4

D *xp(- 9l+OII]

D exp(.)(X I exp(AT!)(I + 0(ICI-2)1, C 4. * (10)

Substitution of (10) and (8) into the general solution (6) yields

Y
b2 (K)expLk2 )(I-) (I + 0(1)1, + 4. 4M11

From formula (8) we see that '*

(iY p- +1 K2
b (kexp(i) 2 -IC D-(- ~~ep~- (12)---2r 2 -2-

Imposing the asymptotic condition (3) and using (11), (12) we finally obtain

P4a _-,( pK - D ~r1  (13)

which yields the equation (E).

To complete the proof of the Proposition we have to show that given any

p > 0, (Z) is uniquely solvable for KC. From (BO, p. 573]

p

.r? J
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D - a 2n

a 2n+ IC

ni0(2n) I )
' 2 n-0 V2

2

is~~~~~ ani an+tcfnto f K 'C ,y>-~a 1 -

an+2~ ~ 2nn+ -lan..,ad ~()-+ ) Sic

22- r2+*

2r (1 + *y

(K) +-1 a__ _ + 1( ) - . an ex (0) (Since

2 n 4-Y-1 2 (YI)/2r~i9

2t0
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20. ABSTRA&CT -cont'd.

g(x) xO(D)
-(p )XIY, x . 0

where y,p, > 0. it is shown that the unique solution of (P), (D) is .

v(x,t) - Y/'V2 ~(J x

'It

where

W) [b1 (IcDi() + b OOcD (~)expL- J

1 p ex(' 1,xp

(i)- ir2 exp(wi +V +)

y+1 2
~P1 : - j)DI(- exp(.-)

ad K dente theaablicil eemieynde futionofidx.
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K K

p p .x~
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